

BNL's Role in ATLAS

From Construction to the Installation/Commissioning

Hong Ma

DOE Annual HEP Review Brookhaven National Lab April 22, 2003

BNL's Role in ATLAS

BNL's Role in ATLAS

H. Gordon (now on ATLAS EB)

- Physics
- BNL Role US ATLAS Management
- Plans for Analysis Center
- From Construction to the Installation/Commissioning
 Work in close collaboration with the Instrumentation Division
 - Liquid argon calorimeter
 - Cryostat and Cryogenics
 - LAr Readout
 - Cathode strip chambers for the Muon system
 - Atlas Technical Coordination
 - Atlas upgrade tracking/calorimeter
- Software and computing/Transition to Physics

S. Rajagopalan

- Software
 - · Core, Simulation/Reconstruction
- ♦ Analysis & Physics
- Facility Support

General Approach

- BNL construction responsibilities matched to our physics interest and technical expertise.
- BNL Physics Dept and Instrumentation Division were pioneers in R&D for both LAr calorimeter and Cathode Strip Chambers.
- Focus on overall system, from construction, electronics, detector software to physics performance.

LAr Cryostat & Cryogenics

- LAr cryostat/cryogenics
 - ◆ Barrel cryostat
 - Signal Feedthroughs
 - ◆ LN₂ refrigerator
 - ♦ N₂ Dewar
 - Quality meters
- Collaboration of Physics Dept, Magnet and Instrumentation Division.

Barrel Cryostat

- Persons Responsible:
- Institutions:
- Responsibility:
- Designed at BNL, manufactured by KHI in Japan
- Production started in March 1999 in KHI
- Delivered to CERN in July 2001
- Final acceptance by CERN in Sept 2002
- Installation to be completed by '05

D. Lissauer, J. Sondericker (Eng.)
BNL, University of Rochester
Design and production including final
acceptance tests, installation.

Signal Feedthroughs

Persons responsible: B. Hackenburg, T. Muller (Eng.)

Institutions: BNL

Responsibility: All Feedthroughs for Barrel and Endcaps

- High signal density and fidelity,
 - ◆ 1920 channels/FT
 - ♦ 64 Feedthrough assemblies
- Production and Test facility at BNL
- Started shipping to CERN in July 2001
- Production completed by March 2002
- Installation completed on barrel.

Cryogenics

Persons Responsible: D. Lissauer , J. Sondericker (Eng.)

Institutions: BNL

Responsibility: Refrigerator, Dewar, Quality Meters, Control System

- Contract Air Liquide for Refrigerator (located on the surface) Nitrogen Dewar (located in the pit)
 - compressor to be delivered to CERN next week
 - Valve boxes at CERN
 - Test nitrogen circulation system in July
- Quality Meter
 - Measures N₂ gas/liquid ratio provides feedback to temperature control
 - Production at BNL shops, shipped 6 (13 total)
- Control system being developed at BNL
 - for functional analysis and programing for N₂ control.

Quality Meters

Quantity of liquid is detected by measuring the capacitance of the offset tube and the outer wall.

(Barrel & Endcaps)

Cryostats cooling.

Quality Meter Testing

Y. Farah putting the finishing touches to the Capacitance to current conversion boards which read out the Q Meter signals. All are now complete, thoroughly checked out and calibrated.

Barrel EM Calorimeter

LAr Readout

- Electrodes
- Motherboards and calibration
- Preamps
- System crate: on detector electronics

Warm cables

Base-plane – analog trigger sums.

Pedestal and Crate

Cooling system

Rad-hard power supply

Integration of front-end electronics

EM Barrel Modules

- Responsible for design of large electrodes.
- contribution to the EM barrel electrode production.
- Electrode production completed.
- First half of the EM barrel has been inserted into the cryostat.
- Second half to be completed by Sept 03

EM barrel inside cryostat viewed from interaction point

Mother Boards

Persons responsible: S. Rajagopalan, S. Rescia (eng.)

Institutions: BNL

Responsibility: All boards mounted on EM barrel calorimeter

 Low crosstalk, high quality control

- Many different types of boards
 - Summing Boards,
 - Mother boards,
 - HV boards,
 - Alignment/Cover Boards,
 - Protection Networks
 - TOTAL of 9380 boards
- Production:
 - Full test facility at BNL.
 - Started in Jan '00
 - Completed in Oct '02
 - All shipped to CERN

Preamps

Persons Responsible: H. Ma, J. Kierstead (Eng.)

Institution: **BNL**

Responsibility: 120k channels of Preamps (½ LAr Calorimeter)

Participate in installation

Designed by BNL and Milano

•Low noise, high dynamic range

• 3 types of hybrids,

•4 channels/hybrid, 30,000 total

Automated tests at BNL

- Preamps production started Feb 2001,
- Completed in Sept 2002, Ready to be installed in Front-end Boards.

hybrid

Power Supply and Crate Assembly

Persons Responsible: H. Takai, J. Kierstead (Eng.)

Institutions: BNL, Nevis, Pittsburgh

Responsibility: All Barrel and EC electronics crates

- From feedthrough to electronics
 - Warm cables, Pedestal and Base-planes
 - Production complete, Installed on barrel and one endcap
 - System Crates.
 - Production and assembly complete at BNL.
- Critical component: LV Power Supplies
 - ◆ Each 3.2 kW power
 - Radiation tests completed on components
 - Gamma, proton, and neutron radiation with less than 1% variation observed
 - Production prototype to be finished by Aug 2003
- Cooling plates for PS and electronic modules
 - Prototype stage, production to follow, assembly at BNL.

Mockup

BNL system Test setup

CERN fullsize Mockup

FrontEnd Crate System Test

Person responsible: F. Lanni, H. Chen; S. Rescia, D. Makowiecki (Eng.)

Institutions: BNL

Responsibility: Full front-end electronics system integration

- F. Lanni is the LAr FrontEnd Electronics Coordinator
- FEC system test system at BNL:
 - Unique in ATLAS for LAr Calorimeter
 - Integration of power supply, cooling, ROD, DAQ, Analysis and People
 - Test for dynamic range, linearity, coherent noise, crosstalk.
 - Preparation for FEB production tests.
- System validation of FEC for All subsystems
 - ◆ EM-Barrel, EM-Endcap, Hadron Cal, Forward CAL
 - Prove system performance
 - Debug installation procedures
 - Identify possible critical points.

Recent FEC Test Activities

- Many collaborators have come to test components:
 - Annecy, Orsay, Saclay, Paris VI, Pittsburgh, Stony Brook, Nevis
- Calibration board has been installed and tested in the FEC setup
- Trigger Tower Builder has been installed and tested
- Online software integration
- ...

LAr Installation and Commissioning

- Our effort will shift from detector production to installation and commissioning.
- Cryogenics:
 - ◆ installation and commissioning in '04 and '05
- Barrel Cryostat:
 - ◆ Solenoid magnet installation end of '03-'04
 - Cold test in '04
 - ◆ Installation in pit in '05
- Electronics:
 - ◆ Frontend crates (modules+cooling) in '04-'05
 - ◆ Electronics installation in pit in '05-'06

Cathode Strip Chambers: Precision Forward Muon System

32 four-layer chambers

 $2.0 < |\eta| < 2.7$

 $|Z| \sim 7m$, 1 < r < 2 m

4 gas gaps per chamber

31,000 channels

Cathode Strip Chamber

Person responsible: V. Polychronakos, P. O'Connor, T. Muller (Eng.)

Institutions: BNL

US Responsibility: Design and construction of 32 CSCs

Installation

- Precision chamber in high rate environment
 - Determine muon position by interpolating the charge on 3 to 5 adjacent strips
 - ◆ Precision (x-) strip pitch ~ 5.6mm
 - Measure charge with S/N=150:1 to get σ=60μm
 - ♦ Second set of y-strip measure transverse coordinate to ~1cm
 - Requires accurate electronic intercalibration of adjacent channels
 - 2 chambers/octant, 32 total
 - 4 layers/chamber, upgradable to 8 layers
 - Operate in high rate environment
- Production and test facility at BNL

Anode Wire Plane Winding

Gas Gain Measurements

100 mCi Americium Source mounted on a Gantry system maps gas gain with fine granularity with a simple current measurement

CSC Production

32 Chambers

- 16 CSC1 (corresponding to Large octants)
- ◆ 16 CSC2 (corresponding to Small octants)
- Assembly and test facility at BNL
 - ◆ Wire Spacing and Tension Tests.
 - ◆ Panel Flatness Tests (mechanical and electrical).
 - ◆ Chamber Assembly and Electronic Flatness Tests.
 - Gas Gain measurements with radioactive source

Production Status

- ◆ CSC panel production is 50% complete.
- ◆ 6 fully assembled CSC1 chambers.
- Expect to finish production by end of '03, ahead of ATLAS installation schedule.

CSC Electronics

Person responsible: V. Polychronakos, P. O'Connor

Institutions: BNL, UC Irvine

Responsibility: All on-chamber electronics

On chamber

- Amplifier/shaper (rad-hard Custom ASIC)
- Analog memory and Digitization
- Interconnect and services
 - ◆ 1000 optical links
 - **◆ LV, HV distribution**
 - Cooling, and Gas System
- Readout Drivers developed by UC-Irvine
- Status:
 - Production to start in Spring 2003

BNL in Technical Coordination

D. Lissauer - Activity A (Project Office) Manager

Member of ATLAS Technical Management

Board

Coordinator for US ATLAS TC activities

(BNL, ANL, LBNL, Boston)

S. Norton - Configuration Control

R. Ruggiaro- Services Routing

A. Gordeev - Access

Installation Resource Planning

- Installation studies included:
 - Installation Sequence
 - Resources needed for installation, tooling, transport, manpower.
 - Specifications for placement in the Hall

February '04

August '04

Examples of Studies

- GAP Task Force:
 - ◆ Increase the GAP between the Barrel and EC by ~40 mm
- Z/R Envelopes:
 - ♦ Increase all the Stay Clear Areas between moving systems.
- Shielding:
 - Major Changes in the shielding configuration.
- New baseline for integrated Pixel/Beam pipe design.
- Access:
 - Preliminary design for Barrel Calorimeter, EC Calorimeter Access.
- Movement Studies:
 - ◆ X, Z bracket design.
- 25 mm move in R for the toroids
- Single Beam pipe for VI and VA sections.

Services and Routing

For example, detail routing of services and access to electronics

Hong Ma, BNL DOE Annual HEP Program Review, April 22, 2002

LHC upgrade

- Consider LHC Luminosity upgrade
 - ◆ SLHC : L = 10^35 /cm^2 /s^1
 - ♦ Bunch crossing: 25ns → 12.5ns
 - ♦ No. interactions/Crossing: 20→100
 - ◆ Radiation: X10
 - ◆ Rates: X10
- We are studying detector upgrade for Inner Tracker and Calorimeter
 - Radiation tolerance
 - Rate capability
 - Pattern recognition capability

Inner Tracker

- ATLAS inner tracker will have to be rebuilt using higher granularity detectors for a harder radiation environment.
 Preserve the current pattern recognition, momentum resolution, b-tagging capability.
 - ◆ Radiation increase by ~ 10.
 - To keep occupancy constant, granularity has to increase by a factor 10.
- ATLAS Inner Tracker:
 - Vertex detector (r < ~20cm)
 aim for a pixels size factor ~ 5-8 smaller
 (50x400 μm² → 50 x 50 μm²)
 - ◆ Intermediate radius: ~20<r<~60 cm Aim for cell sizes 10 times smaller than conventional Si strip detectors.
 - ♦ Outer radius: r>60cm Replace TRT with large area Si detectors.

Inner Tracker R & D

Tracking is challenging at SLHC, Emphasis will be on optimizing the overall system

Simulation: Detector geometry, readout granularity.

Support Structure: Integrated Support of the ID, "Massless".

• Cooling: Thermal management of the system.

Si Detector: Technology, Contact with industry.

Readout: Technology, Power, Connections.

Module Layout: Technology, Integration at the module level.

System Infrastructure: Cabling, Multiplexing.

Optical Links: Power consideration, multiplexing, Rad hard.

Power Supplies: Location, distribution, Cabling.

Radiation Hardness: Radiation hardness of ALL components.

System Tests: Validation of the performance at the system level.

Summary

- ATLAS detector construction at BNL is well underway, and on schedule
 - Most LAr Calorimeter components are completed.
 - CSC construction will finish by end of '03
- Major effort in system integration
 - ◆ LAr front-end crate system test
 - Installation and commissioning
- Technical Coordination
 - ◆ Playing a critical role in ATLAS Technical Coor.
- LHC upgrade:
 - Inner Tracker R & D